UNCLASSIFIED
4431018 |

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

_

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-~
fications or other data are used for any purpose
other than in comnection with a definitely related
government procurement operation, the U. 8.
Government theredy incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any wvay
supplied the said drawvings, specifications, or other
data 1is not to de regarded by implication or cother-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way de related
thereto.




bH -
Q0
pranq
(- D1-82-0326
=
()
<
=
= | BOEINGHS#
> LABORATORIES
) p= :
' 5 2
St Norms and Condition Numbers
e I
rt
| T OMARG 198
| '1 s Albert W. Marshall
| Mg @

——

43101

- Ingram Olkin

Mathematics Research

——

l February 1964




D1-82-0326

NORMS AND CONDITIGN NUMBERS
by

Albert W. Marshall
Mathemstics Research Laboratory

and

Ingram Olkin
Stanford University

Mathematical Note No. 334
Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

February 1964




SUMMARY

The condition number c(P of a non-singular matrix A
is defined by cQ(A) = ¢(A)¢(A—1), where ordinary o is
a norm. It is known that for certain norms, the matrix AA*
is more "ill-conditioned" than A, i.e., cQ(A) < cQ(AA*).
We prove that this inequality holds whenever the norm ¢ is
unitarily invariént (¢(4) 1is a function of the characteristic
roots of AA*). However, we show that the inequality 1is
independent of the usual norm axioms. Some more general

inequalities are also obtained.




NORMS AND CONDITION NUMBERS

By
Albert W. Marshall and Ingram Olkin

Boeing Scientific Research Laboratories and Stanford University

1. Summary and Introduction.

The genesis of this study i1s the proposition that under certain
conditions, the matrix AA* ig more "ill-conditioned" than A.
More precisely, the condition number cw(A) is defined for non-singular

matrices A as

col®) = () o(a™h)

where ordinarily ¢ is a norm. The statement concerning ill-conditioning

of AA* 1is the inequality
c c (A) < c_(AA¥*) .,
(c) oA) < co(anx)

Where ¢(A) is the maximum absolute characteristic root of A
and where ¢(A) = (tr AA*)l/a, inequality (c) was proved by O. Tausky-
Todd [6]. This raises the question of whether (c) 1s true for all norms.
In this paper, we show that quite the contrary is true; (c) is
independent of the usual norm axioms. However, we also prove that (c)
does hold for a quite general class of norms.

In the course of proving these results, we obtain some inequalities

for symmetric gauge functions, which may be of independent interest.




2. Gauge functions and matrix norms.

We call ¢ &a matrix norm if

(aI) o(A) >0 when A # 0,

(aII) o(cA) = |a| ¢(A) for complex a ,

(aIlI) ¢(A+B) < o(A) + @(B) .

In addition to these basic axioms, various other conditions are sometimes

|
)

imposed:

(a1v) oz,) =1,

where Eij is the metrix with one in the (i,j)-th position and

zero elsewhere,
(av) (AB) < (A) o(B) ,
(avI) o(A) = p(UA) = @(AU) for all unitary matrices U.

If ¢ satisfies aI, all, alII, and aVl, ¢ is called a unitarily

invariant norm.

There is an important connection between unitarily invariant norms

and symmetric gauge functions. A function ¢ on a complex vector space

is called a gauge function if
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{b1) ®(u) >0 when u#0,
(b1I) o(au) = |a] ®(u) for complex a,
(bI1II) o(utv) < o(u) + o(v) .

Often it is convenient to assume, in addition, that
(vIVv) oe;) =1,

where e:L is the vector with one in the 1i-th place and zero elsewhere.

If, in addition to bI, bII, and BIII,
(bV) . Q(lll’oo',un) = ¢(€luil’ csey Gn‘uin)

whenever €y = +#1 and (il,...,in) is a permutation of (1,...,n),

then ¢ 1is called a symmetric gauge function.

It was noted by Von Neumann [7] that a norm ¢ is unitarily
invariant if and only if there exists a symmetric gauge function ¢
such that @(A) = o(a) for all A, where 012,...,0!21 are the

eigenvalues of AA*,

If ¢ 1is a symmetric gauge function and u,v satisfy u, < v

i g

i=1,...,n, then it follows {5, p. 85] that

(2.1) ¢(u1,...,un) 5o(vl,...,vn) .
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If ¢ 1is a symmetric gauge function satisfying bIV, then [5, p.86]

n
z Iui, >

(2.2) mex |u,] < ®(w,..c5u) <
1t Hy n =

If ¢ 1is the unitarily invariant matrix norm determined by ¢ as above,
then it follows that

n
_ PR 5 (ABB*A¥)

w7 < = )

o(A) o(B) — [max My (AA*Y] [mex », (BB%)] = B
i 3 J

where xi(M) are the eigenvalues of ‘M. Thus, for any k > n,
k¢ 1is a unitarily invariant matrix norm also satisfying aV.
Of course, @ itself satisfies &IV (since ¢ satisfies bIV), and

this property 1s destroyed by the renormalization.

S The condition number inequality.

Theorem 3.1. If @ 1is a unitarily invariant norm, then
(c) c (A) < cw(AA*) .

If & 1s a symmetric gauge function which determines ¢, then
we may rewrite (c) in the form
-2
) .

-1 -1 2 2 -2
o(al,...,an) <I>(al »eeesQ = o(al,...,an) <1>(oz1 yeeesOy

Thus, Theorem 3.1 is a very special case of




Theorem 3.2. If ¢ 1s a symmetric gauge function, then
o(a’,...,a) (T, ..,a ) is increasing in r > 0, where @, > O
al’ »“n a,l.’ % ’ 1 O
The proof of Theorem 3.2 is embodied in the lemmas below.
We say (al,...,an) is majorized by (bl,...,bn), written
(a) L (b), if (1) a, > .0 28 >0, b >...2b >0,

k k n
(11) Y&, < Y, k=1,..0m-1, (411) Fea =3 b, .
1 I 1

il |2

Lemma 3.3. If f(a) £ (b), and ® is a symmetric gauge function, then
(3.1) Cb(al,...,an) < ¢(bl,...,bn) :

-1 -1 -1 -1
(3.2) <I>(al PERRYL S ) < <1>(‘:>l yeensb )
Proof. A proof of (3.1) has been given by Fan [1]; by an argument
similar to his, we prove (3.2).

First, note that we can assume for h and J fixed, h <,
o = + = + = O
(3.3) a, = b, (l-a)bj S (l-a)bh abj ; & =b, i # h,3

That this is true follows from the fact that if (a) £ (b), then a can
be derived from b by successive applications of a finite number of

transformations of the form (3.3) (see {2, p. 471).
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Let b = (bl, . .,bh,bj,bh+l, v .,bJ _l,bh,bd+l, ixs .,‘bn) . By convexity,

-1, (14)%;1 !

~ -1
(oﬂ:i + (1-a)b_l) < oby

Then using (2.1), it follows that

1)

-1 - ~ \ -1 ~ (-1
<D(a.l yeses8 <b(abl + (l-a)bl) h S oo ¢ (abn + (l-a)bn)

n
=1 ~ _l _l ~ _l
< <I>(ozbl + (l-a)bl P (l-oz)'br1 )

..l)

-1 -1 ~ =1 ~
o’ <x>(bl yeeesd )+ (1-x) <:>(bl seensb

I

As a consequence of Lemma 3.3., we have that if (a) 4 (b) then

-1 -1 -1 -1
o(a ..,an) <I>(al PRETL ) < o(v ..,bn) <1>(1:>l sy ) .

1’ 1’°

The proof of Theorem 3.2 is completed by the following

S

Lemma 3.4. If < > ... >a >0 and a.=al.'/):a 0
= - n i i J

r S
2 b-ai/Za

R
0<r<s, then (a)d (b).

Proof. We must show that for all k,

Q
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which is true if and only if

n k n
ar Z as___ Z a:; z c‘r(a:-;-r_as-:r) > 0.

n
(=3 5
a a, -
: 2% T 3 g gk I J

k+1l

PV
e i

The latter follows from o >a,, i< . I

Observe that by (3.1) and Lemma 3.4, we have

o, )

5 S — S
<b(al,...,an) Za

In view of (2.2), it is perhaps natural to expect that

e

o ,...,0 o
(3.4) 10 e e

» 0<r<s, @>..>a3>0,

ol R,

S S -
¢(al,...,an) Za

[l

for any symmetric gauge function ¢. To see this we need only prove

the left hand inequality, which may be written in the form

c‘1 s an s 01 r an r
(3'5) (I)([—] }"':[_] ) S Q([_] )"0)[-] ) >
L el =il il
and which is a consequence of (2.1).
An interesting counterpart to Theorem 3.2 can be obtained from (3.4).

Theorem 3.5. If ¢ 1is a symmetric gauge function satisfying bIV, then

1

[0((1;:,...,0;') J¥ is decressing in r > O whenever @ >0, 1=1,2,...,n.

R O S o= -




1

r -r -T\ T
Thus [Q(a{,...,ah) L1 NaPR )]° 1is decreasing in r > O.

Proof. We have that

a a
1 < o([ﬁ]s,...,[-‘i]s) < o([fl—]r,...,[anl-]r) A

) L ]

the first inequality by bIV and (2.1). The second inequality is (3.5).

Thus
al s an SyqT al r an ryyT al r an ryyS
@(I=17,...,[=717)) < e(l==1",...,[==17)) < (o([=1,...,[=1")),
& &) - & & &y Ll
so that

1 1

al s an S g al Ir an Ir ;

o([==17,...,[==17)) < (o([=1,...,[==19)) .
e =i - ) @

The theorem now follows. from bII. ||

Theorem 3.5 can, of course, be specialized to yield a kind of

converse to (c).

Theorem 3.6. If @ 1is & unitarily invariant norm satisfying alIV, then
(c*) [ogla) 172 < ()

Condition (c*) can also be obtained under somewhat different

hypotheses. In particular, if ¢ satisfies aV, then




cglAR®) = 9(aa%) of (aA%) ") < o(A) ea™) o(a®) o(a*1) = c(a) c(a¥) .

If also @(A) = ¢(A*), then (c*) follows. Of course, @(A) = @(A*)

if @ 1is unitarily invariant.

4. Independence of the norm axioms and (c).

It 1s our purpose here to show that the condition number inequality
(c) does not follow from the usual norm axioms aI - aV. In fact,
all, aIlIl, alV, aV and (c) are independent.
Remark. It has been shown by Ostrowski [3] that aI 1s implied by
all, aIII, aV, together with @(A) $# O, so that aI is not included
in the list of independent properties. Rella [4] has shown that
elI, aIII, aIV and aV are independent, and we add (c) to this list.
The results which prove the independence of aIIl - aV and (c)
are summarized in the following table, where + (~) indicates that

a property is true (false).

P(A) all alll alVv av (c)

1 % - i + + + +

(rank A) (tr A.A*)l/2 ; + - + + +
n max laijl + + - + +
max laijl + + + = +

L+ + + 1+ -
e,
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The remeinder of this paper is devoted to pro@ing the propositions

indicated in the table.

The results for ¢(A) ® 1 are obvious, so we begin by considering

o(A) = (rank A)(tr aa%)Y/2,

In this case, alII and alV are obvious,
end (c) follows from Theorem 3.1, since (tr AA*)1/2 is unitarily
invariant. As 1s well known, (trAA*)l/2 satisfies aV; this
together with rank AB < (rank A)(renk B) yields aV for

e(A) = (rank A)(tr AA*)l/a.

That &aIIT is violated may be seen by
taking A =1 and B +the matrix with a unit in the (l,l)-th place
and zeros elsewhere.
For ¢(A) = n max [a,,]
iJ
i,J

of the table are well known, and we need only prove (c). Let e

and max Iaijl the first four columns
i

i

be the row vector with one in the i-th position and zero elsewhere,

Denote M T = (mij) where M = (mij)’ and let U = AA*. By Cauchy's

inequality,
laijl [ng[ = [eiAegl [%JA-leEI < [(eiUet)(ejeg)(ﬁzqz)(eau'leg)]l/2
= (uiiuBB)l/2 :
Hence,

JIB < max |u max dua

ReES,

max |a .| max
1,53 o,

or
colh) < Lo (aan)12

Since U = AA¥ 1is positive semi-definite,




1x

ii

& 2
ii

-1
u - e Ue* e U Te* e, e¥* = 1

and it follows that cw(AA*) > 1. Thus, we have that
1,
(1) cold) S T IV? < o (aax)

which gives (c).

Note that the left inequality of (4.1) is a reversal of inequality
(c*). That (4.1) also holds if @(A) 1s the maximum of the absolute
values of the characteristic values of A was proved by O. Tausky-Todd [6].

Since the first four columns of the table are well known for

p(A) = Zlaijl’ we again need consider only (c). If A = (8 -0 )5
0 n~ I
2 1
).

where B = (_l o

Then (c) 1is violated.
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